Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G264-G273, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38258487

RESUMO

Exercise as a lifestyle modification is a frontline therapy for nonalcoholic fatty liver disease (NAFLD), but how components of exercise attenuate steatosis is unclear. To uncouple the effect of increased muscle mass from weight loss in obesity, myostatin knockout mice were bred on a lean and obese db/db background. Myostatin deletion increases gastrocnemius (Gastrocn.) mass and reduces hepatic steatosis and hepatic sterol regulatory element binding protein 1 (Srebp1) expression in obese mice, with no impact on adiposity or body weight. Interestingly, hypermuscularity reduces hepatic NADPH oxidase 1 (Nox1) expression but not NADPH oxidase 4 (Nox4) in db/db mice. To evaluate a deterministic function of Nox1 on steatosis, Nox1 knockout mice were bred on a lean and db/db background. NOX1 deletion significantly attenuates hepatic oxidant stress, steatosis, and Srebp1 programming in obese mice to parallel hypermuscularity, with no improvement in adiposity, glucose control, or hypertriglyceridemia to suggest off-target effects. Directly assessing the role of NOX1 on SREBP1, insulin (Ins)-mediated SREBP1 expression was significantly increased in either NOX1, NADPH oxidase organizer 1 (NOXO1), and NADPH oxidase activator 1 (NOXA1) or NOX5-transfected HepG2 cells versus ?-galactosidase control virus, indicating superoxide is the key mechanistic agent for the actions of NOX1 on SREBP1. Metabolic Nox1 regulators were evaluated using physiological, genetic, and diet-induced animal models that modulated upstream glucose and insulin signaling, identifying hyperinsulinemia as the key metabolic derangement explaining Nox1-induced steatosis in obesity. GEO data revealed that hepatic NOX1 predicts steatosis in obese humans with biopsy-proven NAFLD. Taken together, these data suggest that hypermuscularity attenuates Srebp1 expression in db/db mice through a NOX1-dependent mechanism.NEW & NOTEWORTHY This study documents a novel mechanism by which changes in body composition, notably increased muscle mass, protect against fatty liver disease. This mechanism involves NADPH oxidase 1 (NOX1), an enzyme that increases superoxide and increases insulin signaling, leading to increased fat accumulation in the liver. NOX1 may represent a new early target for preventing fatty liver to stave off later liver diseases such as cirrhosis or liver cancer.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Insulina/metabolismo , Fígado/metabolismo , Camundongos Knockout , Camundongos Obesos , Músculo Esquelético/metabolismo , Miostatina , NADPH Oxidase 1/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/metabolismo , Superóxidos/metabolismo
2.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014255

RESUMO

Introduction: Human saphenous veins (SV) are widely used as grafts in coronary artery bypass (CABG) surgery but often fail due to neointima proliferation (NP). NP involves complex interplay between vascular smooth muscle cells (VSMC) and fibroblasts. Little is known, however, regarding the transcriptomic and proteomic dynamics of NP. Here, we performed multi-omics analysis in an ex vivo tissue culture model of NP in human SV procured for CABG surgery. Methods and results: Histological examination demonstrated significant elastin degradation and NP (indicated by increased neointima area and neointima/media ratio) in SV subjected to tissue culture. Analysis of data from 73 patients suggest that the process of SV adaptation and NP may differ according to sex and body mass index. RNA sequencing confirmed upregulation of pro-inflammatory and proliferation-related genes during NP and identified novel processes, including increased cellular stress and DNA damage responses, which may reflect tissue trauma associated with SV harvesting. Proteomic analysis identified upregulated extracellular matrix-related and coagulation/thrombosis proteins and downregulated metabolic proteins. Spatial transcriptomics detected transdifferentiating VSMC in the intima on the day of harvesting and highlighted dynamic alterations in fibroblast and VSMC phenotype and behavior during NP. Specifically, we identified new cell subpopulations contributing to NP, including SPP1 + , LGALS3 + VSMC and MMP2 + , MMP14 + fibroblasts. Conclusion: Dynamic alterations of gene and protein expression occur during NP in human SV. Identification of the human-specific molecular and cellular mechanisms may provide novel insight into SV bypass graft disease.

3.
Hypertension ; 80(10): 2059-2071, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37729634

RESUMO

BACKGROUND: Type 1 diabetes (T1D) is a major cause of endothelial dysfunction. Although cellular bioenergetics has been identified as a new regulator of vascular function, whether glycolysis, the primary bioenergetic pathway in endothelial cells (EC), regulates vascular tone and contributes to impaired endothelium-dependent relaxation (EDR) in T1D remains unknown. METHODS: Experiments were conducted in Akita mice with intact or selective deficiency in EC PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3), the main regulator of glycolysis. Seahorse analyzer and myography were employed to measure glycolysis and mitochondrial respiration, and EDR, respectively, in aortic explants. EC PFKFB3 (Ad-PFKFB3) and glycolysis (Ad-GlycoHi) were increased in situ via adenoviral transduction. RESULTS: T1D increased EC glycolysis and elevated EC expression of PFKFB3 and NADPH oxidase Nox1 (NADPH oxidase homolog 1). Functionally, pharmacological and genetic inhibition of PFKFB3 restored EDR in T1D, while in situ aorta EC transduction with Ad-PFKFB3 or Ad-GlycoHi reproduced the impaired EDR associated with T1D. Nox1 inhibition restored EDR in aortic rings from Akita mice, as well as in Ad-PFKFB3-transduced aorta EC and lactate-treated wild-type aortas. T1D increased the expression of the advanced glycation end product precursor methylglyoxal in the aortas. Exposure of the aortas to methylglyoxal impaired EDR, which was prevented by PFKFB3 inhibition. T1D and exposure to methylglyoxal increased EC expression of HIF1α (hypoxia-inducible factor 1α), whose inhibition blunted methylglyoxal-mediated EC PFKFB3 upregulation. CONCLUSIONS: EC bioenergetics, namely glycolysis, is a new regulator of vasomotion and excess glycolysis, a novel mechanism of endothelial dysfunction in T1D. We introduce excess methylglyoxal, HIF1α, and PFKFB3 as major effectors in T1D-mediated increased EC glycolysis.


Assuntos
Diabetes Mellitus Tipo 1 , Células Endoteliais , Animais , Camundongos , Aldeído Pirúvico , Glicólise , Endotélio
5.
Am J Physiol Gastrointest Liver Physiol ; 323(4): G387-G400, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35997288

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is associated with disruption of homeostatic lipid metabolism, but underlying processes are poorly understood. One possible mechanism is impairment in hepatic circadian rhythm, which regulates key lipogenic mediators in the liver and whose circadian oscillation is diminished in obesity. Nobiletin enhances biological rhythms by activating RAR-related orphan receptor nuclear receptor, protecting against metabolic syndrome in a clock-dependent manner. The effect of nobiletin in NAFLD is unclear. In this study, we investigate the clock-enhancing effects of nobiletin in genetically obese (db/db) PER2::LUCIFERASE reporter mice with fatty liver. We report microarray expression data suggesting hepatic circadian signaling is impaired in db/db mice with profound hepatic steatosis. Circadian PER2 activity, as assessed by mRNA and luciferase assay, was significantly diminished in liver of db/db PER2::LUCIFERASE reporter mice. Continuous animal monitoring systems and constant dark studies suggest the primary circadian defect in db/db mice lies within peripheral hepatic oscillators and not behavioral rhythms or the master clock. In vitro, nobiletin restored PER2 amplitude in lipid-laden PER2::LUCIFERASE reporter macrophages. In vivo, nobiletin dramatically upregulated core clock gene expression, hepatic PER2 activity, and ameliorated steatosis in db/db PER2::LUCIFERASE reporter mice. Mechanistically, nobiletin reduced serum insulin levels, decreased hepatic Srebp1c, Acaca1, Tnfα, and Fgf21 expression, but did not improve Plin2, Plin5, or Cpt1, suggesting nobiletin attenuates steatosis in db/db mice via downregulation of hepatic lipid accumulation. These data suggest restoring endogenous rhythm with nobiletin resolves steatosis in obesity, proposing that hypothesis that targeting the biological clock may be an attractive therapeutic strategy for NAFLD.NEW & NOTEWORTHY NAFLD is the most common chronic liver disease, but underlying mechanisms are unclear. We show here that genetically obese (db/db) mice with fatty liver have impaired hepatic circadian rhythm. Hepatic Per2 expression and PER2 reporter activity are diminished in db/db PER2::LUCIFERASE mice. The biological clock-enhancer nobiletin restores hepatic PER2 in db/db PER2::LUCIFERASE mice, resolving steatosis via downregulation of Srebp1c. These studies suggest targeting the circadian clock may be beneficial strategy in NAFLD.


Assuntos
Relógios Circadianos , Insulinas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Ritmo Circadiano , Camundongos Obesos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Relógios Circadianos/genética , Obesidade/complicações , Obesidade/tratamento farmacológico , Luciferases/metabolismo , Luciferases/farmacologia , RNA Mensageiro , Insulinas/metabolismo , Insulinas/farmacologia , Lipídeos/farmacologia , Camundongos Endogâmicos C57BL
6.
Microbiol Spectr ; 10(1): e0167121, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35171047

RESUMO

The vascular endothelial injury occurs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, but the mechanisms are poorly understood. We sought to determine the frequency and type of cytokine elevations and their relationship to endothelial injury induced by plasma from patients with SARS-CoV-2 versus controls. Plasma from eight consecutively enrolled patients hospitalized with acute SARS-CoV-2 infection was compared to controls. Endothelial cell (EC) barrier integrity was evaluated using ECIS (electric cell-substrate impedance sensing) on human lung microvascular EC. Plasma from all SARS-CoV-2 but none from controls decreased transendothelial resistance to a greater degree than that produced by tumor necrosis factor-alpha (TNF-α), the positive control for the assay. Thrombin, angiopoietin 2 (Ang2), and vascular endothelial growth factor (VEGF), complement factor C3a and C5a, and spike protein increased endothelial permeability, but to a lesser extent and a shorter duration when compared to SARS-CoV-2 plasma. Analysis of Ang2, VEGF, and 15 cytokines measured in plasma revealed striking patient-to-patient variability within the SARS-CoV-2 patients. Pretreatment with thrombin inhibitors, single, or combinations of neutralizing antibodies against cytokines, Ca3 and C5a receptor antagonists, or with ACE2 antibody failed to lessen the SARS-CoV-2 plasma-induced EC permeability. The EC barrier destructive effects of plasma from patients with SARS-CoV-2 were susceptible to heat inactivation. Plasma from patients hospitalized with acute SARS-CoV-2 infection uniformly disrupts lung microvascular integrity. No predicted single, or set of, cytokine(s) accounted for the enhanced vascular permeability, although the factor(s) were heat-labile. A still unidentified but potent circulating factor(s) appears to cause the EC disruption in SARS-CoV-2 infected patients. IMPORTANCE Lung vascular endothelial injury in SARS-CoV-2 patients is one of the most important causes of morbidity and mortality and has been linked to more severe complications including acute respiratory distress syndrome (ARDS) and subsequent death due to multiorgan failure. We have demonstrated that in eight consecutive patients with SARS-CoV-2, who were not selected for evidence of endothelial injury, the diluted plasma-induced intense lung microvascular damage, in vitro. Known endothelial barrier-disruptive agents and proposed mediators of increased endothelial permeability in SARS-CoV-2, induced changes in permeability that were smaller in magnitude and shorter in duration than plasma from patients with SARS-CoV-2. The effect on endothelial cell permeability of plasma from patients with SARS-CoV-2 was heat-labile. The main plasma factor that causes the increased endothelial permeability remains to be identified. Our study provides a possible approach for future studies to understand the underlying mechanisms leading to vascular injury in SARS-CoV-2 infections.


Assuntos
COVID-19/sangue , Permeabilidade Capilar , Citocinas/sangue , Pulmão/irrigação sanguínea , SARS-CoV-2/fisiologia , Adulto , Idoso , COVID-19/fisiopatologia , COVID-19/virologia , Células Endoteliais/virologia , Feminino , Humanos , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/genética , Fator de Necrose Tumoral alfa/sangue , Fator A de Crescimento do Endotélio Vascular , Adulto Jovem
7.
Circulation ; 144(23): 1856-1875, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34694145

RESUMO

BACKGROUND: Vascular homeostasis is maintained by the differentiated phenotype of vascular smooth muscle cells (VSMCs). The landscape of protein coding genes comprising the transcriptome of differentiated VSMCs has been intensively investigated but many gaps remain including the emerging roles of noncoding genes. METHODS: We reanalyzed large-scale, publicly available bulk and single-cell RNA sequencing datasets from multiple tissues and cell types to identify VSMC-enriched long noncoding RNAs. The in vivo expression pattern of a novel smooth muscle cell (SMC)-expressed long noncoding RNA, Carmn (cardiac mesoderm enhancer-associated noncoding RNA), was investigated using a novel Carmn green fluorescent protein knock-in reporter mouse model. Bioinformatics and quantitative real-time polymerase chain reaction analysis were used to assess CARMN expression changes during VSMC phenotypic modulation in human and murine vascular disease models. In vitro, functional assays were performed by knocking down CARMN with antisense oligonucleotides and overexpressing Carmn by adenovirus in human coronary artery SMCs. Carotid artery injury was performed in SMC-specific Carmn knockout mice to assess neointima formation and the therapeutic potential of reversing CARMN loss was tested in a rat carotid artery balloon injury model. The molecular mechanisms underlying CARMN function were investigated using RNA pull-down, RNA immunoprecipitation, and luciferase reporter assays. RESULTS: We identified CARMN, which was initially annotated as the host gene of the MIR143/145 cluster and recently reported to play a role in cardiac differentiation, as a highly abundant and conserved, SMC-specific long noncoding RNA. Analysis of the Carmn GFP knock-in mouse model confirmed that Carmn is transiently expressed in embryonic cardiomyocytes and thereafter becomes restricted to SMCs. We also found that Carmn is transcribed independently of Mir143/145. CARMN expression is dramatically decreased by vascular disease in humans and murine models and regulates the contractile phenotype of VSMCs in vitro. In vivo, SMC-specific deletion of Carmn significantly exacerbated, whereas overexpression of Carmn markedly attenuated, injury-induced neointima formation in mouse and rat, respectively. Mechanistically, we found that Carmn physically binds to the key transcriptional cofactor myocardin, facilitating its activity and thereby maintaining the contractile phenotype of VSMCs. CONCLUSIONS: CARMN is an evolutionarily conserved SMC-specific long noncoding RNA with a previously unappreciated role in maintaining the contractile phenotype of VSMCs and is the first noncoding RNA discovered to interact with myocardin.


Assuntos
Contração Muscular , Músculo Liso Vascular/metabolismo , Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/metabolismo , Transativadores/metabolismo , Animais , Humanos , Camundongos , Proteínas Nucleares/genética , RNA Longo não Codificante/genética , Ratos , Transativadores/genética
8.
Am J Respir Crit Care Med ; 203(9): 1158-1172, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465322

RESUMO

Rationale: Posttranscriptional modifications are implicated in vascular remodeling of pulmonary hypertension (PH). m6A (N6-methyladenosine) is an abundant RNA modification that is involved in various biological processes. Whether m6A RNA modification and m6A effector proteins play a role in pulmonary vascular remodeling and PH has not been demonstrated.Objectives: To determine whether m6A modification and m6A effectors contribute to the pathogenesis of PH.Methods: m6A modification and YTHDF1 expression were measured in human and experimental PH samples. RNA immunoprecipitation analysis and m6A sequencing were employed to screen m6A-marked transcripts. Genetic approaches were employed to assess the respective roles of YTHDF1 and MAGED1 in PH. Primary cell isolation and cultivation were used for function analysis of pulmonary artery smooth muscle cells (PASMCs).Measurements and Main Results: Elevated m6A levels and increased YTHDF1 protein expression were found in human and rodent PH samples as well as in hypoxic PASMCs. The deletion of YTHDF1 ameliorated PASMC proliferation, phenotype switch, and PH development both in vivo and in vitro. m6A RNA immunoprecipitation analysis identified MAGED1 as an m6A-regulated gene in PH, and genetic ablation of MAGED1 improved vascular remodeling and hemodynamic parameters in SU5416/hypoxia mice. YTHDF1 recognized and promoted translation of MAGED1 in an m6A-dependent manner that was absent in METTL3-deficient PASMCs. In addition, MAGED1 silencing inhibited hypoxia-induced proliferation of PASMCs through downregulating PCNA.Conclusions: YTHDF1 promotes PASMC proliferation and PH by enhancing MAGED1 translation. This study identifies the m6A RNA modification as a novel mediator of pathological changes in PASMCs and PH.


Assuntos
Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Remodelação Vascular/fisiologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Técnicas de Cultura de Células , Proliferação de Células , Modelos Animais de Doenças , Humanos , Hipertensão Pulmonar/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia
9.
Br J Pharmacol ; 178(5): 1055-1072, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33300142

RESUMO

BACKGROUND AND PURPOSE: Macrophage infiltration into the lungs is a characteristic of pulmonary hypertension (PH). Glycolysis is the main metabolic pathway for macrophage activation. However, the effect of macrophage glycolysis on the development of PH remains unknown. We investigated the effect of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKBF3), a critical enzyme of macrophage glycolysis, on PH development. EXPERIMENTAL APPROACH: Lung tissues from PH patients were examined by immunostaining with macrophage markers. PH was induced in Wistar rats with SU5416/hypoxia and in mice with hypoxia. Lungs and macrophages were isolated for analysis by RT-PCR, western blot, flow cytometry, and immunostaining. KEY RESULTS: Expression of glycolytic molecules was increased in circulating peripheral blood mononuclear cells (PBMCs) and lung macrophages of PH patients. These results were also found in lung macrophages of SU5416/hypoxia (Su/Hx)-induced PH rats and hypoxia-induced PH mice. PH was ameliorated in myeloid-specific Pfkfb3-deficient mice (Pfkfb3ΔMϕ ) or mice treated with the PFKFB3 inhibitor 3PO, compared with their controls. Alveolar macrophages of PH Pfkfb3ΔMϕ mice produced lower levels of growth factors and pro-inflammatory cytokines than those of control mice. Circulating myeloid cells and lung myeloid cells were much fewer in PH Pfkfb3ΔMϕ mice than controls. Mechanistically, overexpression of Hif1a or Hif2a in bone marrow-derived macrophages (BMDMs) cultured with bone marrow of Pfkfb3ΔMϕ mice restored the decreased expression of pro-inflammatory cytokines and growth factors. CONCLUSIONS AND IMPLICATIONS: Myeloid Pfkfb3 deficiency protects mice from PH, thereby suggesting that myeloid PFKFB3 is one of the important targets in the therapeutic effect of PFKFB3 inhibition in PH treatment.


Assuntos
Hipertensão Pulmonar , Animais , Glicólise , Humanos , Hipóxia , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Camundongos , Fosfofrutoquinase-2/metabolismo , Ratos , Ratos Wistar
10.
Sci Rep ; 10(1): 18078, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093565

RESUMO

Lipopolysaccharide (LPS), a component of the outer membrane of gram-negative bacteria, disrupts the alveolar-capillary barrier, triggering pulmonary vascular leak thus inducing acute lung injury (ALI). Extracellular purines, adenosine and ATP, protected against ALI induced by purified LPS. In this study, we investigated whether these purines can impact vascular injury in more clinically-relevant E.coli (non-sterile LPS) murine ALI model. Mice were inoculated with live E. coli intratracheally (i.t.) with or without adenosine or a non-hydrolyzable ATP analog, adenosine 5'-(γ-thio)-triphosphate (ATPγS) added intravenously (i.v.). After 24 h of E. coli treatment, we found that injections of either adenosine or ATPγS 15 min prior or adenosine 3 h after E.coli insult significantly attenuated the E.coli-mediated increase in inflammatory responses. Furthermore, adenosine prevented weight loss, tachycardia, and compromised lung function in E. coli-exposed mice. Accordingly, treatment with adenosine or ATPγS increased oxygen saturation and reduced histopathological signs of lung injury in mice exposed to E. coli. Lastly, lung-targeting gene delivery of adenosine or ATPγS downstream effector, myosin phosphatase, significantly attenuated the E. coli-induced compromise of lung function. Collectively, our study has demonstrated that adenosine or ATPγS mitigates E. coli-induced ALI in mice and may be useful as an adjuvant therapy in future pre-clinical studies.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Trifosfato de Adenosina/análogos & derivados , Adenosina/farmacologia , Escherichia coli/patogenicidade , Pneumonia Bacteriana/complicações , Vasodilatadores/farmacologia , Lesão Pulmonar Aguda/etiologia , Trifosfato de Adenosina/farmacologia , Marcadores de Afinidade/farmacologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Sci Transl Med ; 12(555)2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32759274

RESUMO

The coordination of metabolic signals among different cellular components in pathological retinal angiogenesis is poorly understood. Here, we showed that in the pathological angiogenic vascular niche, retinal myeloid cells, particularly macrophages/microglia that are spatially adjacent to endothelial cells (ECs), are highly glycolytic. We refer to these macrophages/microglia that exhibit a unique angiogenic phenotype with increased expression of both M1 and M2 markers and enhanced production of both proinflammatory and proangiogenic cytokines as pathological retinal angiogenesis-associated glycolytic macrophages/microglia (PRAGMs). The phenotype of PRAGMs was recapitulated in bone marrow-derived macrophages or retinal microglia stimulated by lactate that was produced by hypoxic retinal ECs. Knockout of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (PFKFB3; Pfkfb3 for rodents), a glycolytic activator in myeloid cells, impaired the ability of macrophages/microglia to acquire an angiogenic phenotype, rendering them unable to promote EC proliferation and sprouting and pathological neovascularization in a mouse model of oxygen-induced proliferative retinopathy. Mechanistically, hyperglycolytic macrophages/microglia produced large amount of acetyl-coenzyme A, leading to histone acetylation and PRAGM-related gene induction, thus reprogramming macrophages/microglia into an angiogenic phenotype. These findings reveal a critical role of glycolytic metabolites as initiators of reciprocal activation of macrophages/microglia and ECs in the retinal angiogenic niche and suggest that strategies targeting the metabolic communication between these cell types may be efficacious in the treatment of pathological retinal angiogenesis.


Assuntos
Células Endoteliais , Glicólise , Animais , Células Endoteliais/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Fosfofrutoquinase-2/metabolismo
12.
Front Immunol ; 10: 2286, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608069

RESUMO

As fundamental processes of immune homeostasis, autophagy, and apoptosis must be maintained to mitigate risk of chronic inflammation and autoimmune diseases. Periodontitis is a chronic inflammatory disease characterized by oral microbial dysbiosis, and dysregulation of dendritic cell (DC) and T cell responses. The aim of this study was to elucidate the underlying mechanisms by which the oral microbe Porphyromonas gingivalis (P. gingivalis) manipulates dendritic cell signaling to perturb both autophagy and apoptosis. Using a combination of Western blotting, flow cytometry, qRT-PCR and immunofluorescence analysis, we show a pivotal role for the minor (Mfa1) fimbriae of P. gingivalis in nuclear/cytoplasmic shuttling of Akt and FOXO1 in human monocyte-derived DCs. Mfa1-induced Akt nuclear localization and activation ultimately induced mTOR. Activation of the Akt/mTOR axis downregulated intracellular LC3II, also known as Atg8, required for autophagosome formation and maturation. Use of allosteric panAkt inhibitor MK2206 and mTOR inhibitor rapamycin confirmed the role of Akt/mTOR signaling in autophagy inhibition by P. gingivalis in DCs. Interestingly, this pathway was also linked to induction of the anti-apoptotic protein Bcl2, decreased caspase-3 cleavage and decreased expression of pro-apoptotic proteins Bax and Bim, thus promoting longevity of host DCs. Addition of ABT-199 peptide to disrupt the interaction of antiapoptotic Bcl2 and its proapoptotic partners BAK/BAX restored apoptotic death to P. gingivalis-infected DC cells. In summary, we have identified the underlying mechanism by which P. gingivalis promotes its own survival and that of its host DCs.


Assuntos
Apoptose , Autofagia , Infecções por Bacteroidaceae/imunologia , Células Dendríticas/imunologia , Porphyromonas gingivalis , Infecções por Bacteroidaceae/virologia , Células Cultivadas , Células Dendríticas/microbiologia , Fímbrias Bacterianas , Proteína Forkhead Box O1/imunologia , Homeostase , Humanos , Proteínas Proto-Oncogênicas c-akt , Receptor 1 Toll-Like/imunologia , Receptor 2 Toll-Like/imunologia
13.
Hypertension ; 74(6): 1399-1408, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31656096

RESUMO

Leptin is the current treatment for metabolic disorders associated with acquired and congenital generalized lipodystrophy (CGL). Although excess leptin levels have been associated with vascular inflammation and cardiovascular disease in the context of obesity, the effects of chronic leptin treatment on vascular function remain unknown in CGL. Here, we hypothesized that leptin treatment will improve endothelial function via direct vascular mechanisms. We investigated the cardiovascular consequences of leptin deficiency and supplementation in male gBscl2-/- (Berardinelli-Seip 2 gene-deficient) mice-a mouse model of CGL. CGL mice exhibited reduced adipose mass and leptin levels, as well as impaired endothelium-dependent relaxation. Blood vessels from CGL mice had increased NADPH Oxidase 1 (Nox1) expression and reactive oxygen species production, and selective Nox1 inhibition restored endothelial function. Remarkably, chronic and acute leptin supplementation restored endothelial function via a PPARγ-dependent mechanism that decreased Nox1 expression and reactive oxygen species production. Selective ablation of leptin receptors in endothelial cells promoted endothelial dysfunction, which was restored by Nox1 inhibition. Lastly, we confirmed in aortic tissue from older patients undergoing cardiac bypass surgery that acute leptin can promote signaling in human blood vessels. In conclusion, in gBscl2-/- mice, leptin restores endothelial function via peroxisome proliferator activated receptor gamma-dependent decreases in Nox1. Furthermore, we provide the first evidence that vessels from aged patients remain leptin sensitive. These data reveal a new direct role of leptin receptors in the control of vascular homeostasis and present leptin as a potential therapy for the treatment of vascular disease associated with low leptin levels.


Assuntos
Leptina/farmacologia , Lipodistrofia Generalizada Congênita/tratamento farmacológico , NADPH Oxidase 1/metabolismo , PPAR gama/metabolismo , Análise de Variância , Animais , Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Lipodistrofia Generalizada Congênita/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo , Valores de Referência , Resultado do Tratamento
14.
Hypertension ; 74(3): 678-686, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31327274

RESUMO

Compelling clinical evidence indicates that obesity and its associated metabolic abnormalities supersede the protective effects of female sex-hormones and predisposes premenopausal women to cardiovascular disease. The underlying mechanisms remain poorly defined; however, recent studies have implicated overactivation of the aldosterone-MR (mineralocorticoid receptor) axis as a cause of sex-specific cardiovascular risk in obese females. Experimental evidence indicates that the MR on endothelial cells contributes to obesity-associated, leptin-induced endothelial dysfunction in female experimental models, however, the vascular-specific mechanisms via which females are predisposed to heightened endothelial MR activation remain unknown. Therefore, we hypothesized that endogenous expression of endothelial MR is higher in females than males, which predisposes them to obesity-associated, leptin-mediated endothelial dysfunction. We found that endothelial MR expression is higher in blood vessels from female mice and humans compared with those of males, and further, that PrR (progesterone receptor) activation in endothelial cells is the driving mechanism for sex-dependent increases in endothelial MR expression in females. In addition, we show that genetic deletion of either the endothelial MR or PrR in female mice prevents leptin-induced endothelial dysfunction, providing direct evidence that interaction between the PrR and MR mediates obesity-associated endothelial impairment in females. Collectively, these novel findings suggest that progesterone drives sex-differences in endothelial MR expression and predisposes female mice to leptin-induced endothelial dysfunction, which indicates that MR antagonists may be a promising sex-specific therapy to reduce the risk of cardiovascular diseases in obese premenopausal women.


Assuntos
Endotélio Vascular/patologia , Regulação da Expressão Gênica , Obesidade/fisiopatologia , Progesterona/metabolismo , Receptores de Mineralocorticoides/genética , Animais , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Feminino , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Obesidade/genética , Distribuição Aleatória , Medição de Risco , Sensibilidade e Especificidade , Fatores Sexuais , Regulação para Cima
15.
Antioxid Redox Signal ; 31(14): 1053-1069, 2019 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30767565

RESUMO

Significance: Pulmonary arterial hypertension (PAH) is a progressive disease arising from the narrowing of pulmonary arteries (PAs) resulting in high pulmonary arterial blood pressure and ultimately right ventricle (RV) failure. A defining characteristic of PAH is the excessive and unrelenting inward remodeling of PAs that includes increased proliferation, inflammation, and fibrosis. Critical Issues: There is no cure for PAH nor interventions that effectively arrest or reverse PA remodeling, and intensive research over the past several decades has sought to identify novel molecular mechanisms of therapeutic value. Recent Advances: Galectin-3 (Gal-3) is a carbohydrate-binding lectin remarkable for its chimeric structure, composed of an N-terminal oligomerization domain and a C-terminal carbohydrate-recognition domain. Gal-3 has been identified as a regulator of numerous changes in cell behavior that contributes to aberrant PA remodeling, including cell proliferation, inflammation, and fibrosis, but its role in PAH has remained poorly understood until recently. In contrast, pathological roles for Gal-3 have been proposed in cancer and inflammatory and fibroproliferative disorders, such as pulmonary vascular and cardiac fibrosis. Herein, we summarize the recent literature on the role of Gal-3 in the development of PAH. We provide experimental evidence supporting the ability of Gal-3 to influence reactive oxygen species production, NADPH oxidase enzyme expression, and redox signaling, which have been shown to contribute to both vascular remodeling and increased pulmonary arterial pressure. Future Directions: While several preclinical studies suggest that Gal-3 promotes hypertensive pulmonary vascular remodeling, the clinical significance of Gal-3 in human PAH remains to be established. Antioxid. Redox Signal. 00, 000-000.


Assuntos
Fibrose/metabolismo , Galectina 3/metabolismo , Inflamação/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos
16.
J Cell Physiol ; 234(5): 5863-5879, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29271489

RESUMO

Maintenance of the endothelial cell (EC) barrier is critical to vascular homeostasis and a loss of barrier integrity results in increased vascular permeability. While the mechanisms that govern increased EC permeability have been under intense investigation over the past several decades, the processes regulating the preservation/restoration of the EC barrier remain poorly understood. Herein we show that the extracellular purines, adenosine (Ado) and adenosine 5'-[γ-thio]-triphosphate (ATPγS) can strengthen the barrier function of human lung microvascular EC (HLMVEC). This ability involves protein kinase A (PKA) activation and decreases in myosin light chain 20 (MLC20) phosphorylation secondary to the involvement of MLC phosphatase (MLCP). In contrast to Ado, ATPγS-induced PKA activation is accompanied by a modest, but significant decrease in cyclic adenosine monophosphate (cAMP) levels supporting the existence of an unconventional cAMP-independent pathway of PKA activation. Furthermore, ATPγS-induced EC barrier strengthening does not involve the Rap guanine nucleotide exchange factor 3 (EPAC1) which is directly activated by cAMP but is instead dependent upon PKA-anchor protein 2 (AKAP2) expression. We also found that AKAP2 can directly interact with the myosin phosphatase-targeting protein MYPT1 and that depletion of AKAP2 abolished ATPγS-induced increases in transendothelial electrical resistance. Ado-induced strengthening of the HLMVEC barrier required the coordinated activation of PKA and EPAC1 in a cAMP-dependent manner. In summary, ATPγS-induced enhancement of the EC barrier is EPAC1-independent and is instead mediated by activation of PKA which is then guided by AKAP2, in a cAMP-independent mechanism, to activate MLCP which dephosphorylates MLC20 resulting in reduced EC contraction and preservation.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Permeabilidade Capilar/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Agonistas do Receptor Purinérgico P1/farmacologia , Receptores Purinérgicos P1/efeitos dos fármacos , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Trifosfato de Adenosina/farmacologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Impedância Elétrica , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microvasos/metabolismo , Cadeias Leves de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Receptores Purinérgicos P1/genética , Receptores Purinérgicos P1/metabolismo , Transdução de Sinais
17.
Eur J Pharmacol ; 844: 26-37, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30502342

RESUMO

Diabetes-induced vascular endothelial dysfunction has been reported to involve hyperglycemia-induced increases in arginase activity. However, upstream mediators of this effect are not clear. Here, we have tested involvement of Rho kinase, ERK1/2 and p38 MAPK pathways in this process. Studies were performed with aortas isolated from wild type or hemizygous arginase 1 knockout (Arg1+/-) mice and bovine aortic endothelial cells exposed to high glucose (HG, 25 mmol/l) or normal glucose (NG, 5.5 mmol/l) conditions for different times. Effects of inhibitors of arginase, p38 MAPK, ERK1/2 or ROCK and ex vivo adenoviral delivery of active Arg1 and inactive (D128-Arg1) cDNA were also determined. Exposure in wild type aorta or endothelial cells to HG significantly increased arginase activity and Arg1 expression and impaired aortic relaxation. Transduction of wild type aorta with active Arg1 cDNA impaired vascular relaxation, whereas inactive Arg1 had no effect. The HG-induced vascular endothelial dysfunction was associated with increased phosphorylation (activation) of ERK1/2 and p38 MAPK. Pretreatment with inhibitors of ERK1/2, p38 MAPK, ROCK or arginase blocked HG-induced elevation of arginase activity and Arg1 expression and prevented the vascular dysfunction. Inhibition of ROCK blunted the HG-induced activation of ERK1/2 and p38 MAPK. In summary, activated ROCK and subsequent activation of ERK1/2 or p38 MAPK elevates arginase activity and Arg1 expression in hyperglycemic states. Targeting this pathway may provide an effective means for preventing diabetes/hyperglycemia-induced vascular endothelial dysfunction.


Assuntos
Aorta/fisiologia , Arginase/fisiologia , Hiperglicemia , Proteínas Quinases/fisiologia , Adenoviridae/genética , Animais , Aorta/efeitos dos fármacos , Arginase/antagonistas & inibidores , Bovinos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Endotélio Vascular/fisiologia , Glucose/farmacologia , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Hiperglicemia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores de Proteínas Quinases/farmacologia , Vasodilatação
18.
Arterioscler Thromb Vasc Biol ; 38(12): 2780-2792, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30571174

RESUMO

Objective- Monocyte-derived foam cells are one of the key players in the formation of atherosclerotic plaques. Adenosine receptors and extracellular adenosine have been demonstrated to modulate foam cell formation. ADK (adenosine kinase) is a major enzyme regulating intracellular adenosine levels, but its functional role in myeloid cells remains poorly understood. To enhance intracellular adenosine levels in myeloid cells, ADK was selectively deleted in novel transgenic mice using Cre-LoxP technology, and foam cell formation and the development of atherosclerotic lesions were determined. Approach and Results- ADK was upregulated in macrophages on ox-LDL (oxidized low-density lipoprotein) treatment in vitro and was highly expressed in foam cells in atherosclerotic plaques. Atherosclerotic mice deficient in ADK in myeloid cells were generated by breeding floxed ADK (ADKF/F) mice with LysM-Cre (myeloid-specific Cre recombinase expressing) mice and ApoE-/- (apolipoprotein E deficient) mice. Mice absent ADK in myeloid cells exhibited much smaller atherosclerotic plaques compared with controls. In vitro assays showed that ADK deletion or inhibition resulted in increased intracellular adenosine and reduced DNA methylation of the ABCG1 (ATP-binding cassette transporter G1) gene. Loss of methylation was associated with ABCG1 upregulation, enhanced cholesterol efflux, and eventually decreased foam cell formation. Conclusions- Augmentation of intracellular adenosine levels through ADK knockout in myeloid cells protects ApoE-/- mice against atherosclerosis by reducing foam cell formation via the epigenetic regulation of cholesterol trafficking. ADK inhibition is a promising approach for the treatment of atherosclerotic diseases.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Quinase/deficiência , Aorta/enzimologia , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Epigênese Genética , Células Espumosas/enzimologia , Camundongos Knockout para ApoE , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Quinase/genética , Animais , Aorta/patologia , Doenças da Aorta/enzimologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Colesterol/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Feminino , Células Espumosas/patologia , Masculino , Camundongos Endogâmicos C57BL , Placa Aterosclerótica , Transdução de Sinais
19.
Front Immunol ; 9: 1309, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29951058

RESUMO

Pneumonia is a leading cause of death in children and the elderly worldwide, accounting for 15% of all deaths of children under 5 years old. Streptococcus pneumoniae is a common and aggressive cause of pneumonia and can also contribute to meningitis and sepsis. Despite the widespread use of antibiotics, mortality rates for pneumonia remain unacceptably high in part due to the release of bacterial toxins. Pneumolysin (PLY) is a cholesterol-dependent toxin that is produced by Streptococcus, and it is both necessary and sufficient for the development of the extensive pulmonary permeability edema that underlies acute lung injury. The mechanisms by which PLY disrupts the pulmonary endothelial barrier are not fully understood. Previously, we found that reactive oxygen species (ROS) contribute to the barrier destructive effects of PLY and identified an unexpected but potent role of Hsp70 in suppressing ROS production. The ability of Hsp70 to influence PLY-induced barrier dysfunction is not yet described, and the goal of the current study was to identify whether Hsp70 upregulation is an effective strategy to protect the lung microvascular endothelial barrier from G+ bacterial toxins. Overexpression of Hsp70 via adenovirus-mediated gene transfer attenuated PLY-induced increases in permeability in human lung microvascular endothelial cells (HLMVEC) with no evidence of cytotoxicity. To adopt a more translational approach, we employed a pharmacological approach using geranylgeranylacetone (GGA) to acutely upregulate endogenous Hsp70 expression. Following acute treatment (6 h) with GGA, HLMVECs exposed to PLY displayed improved cell viability and enhanced endothelial barrier function as measured by both Electric Cell-substrate Impedance Sensing (ECIS) and transwell permeability assays compared to control treated cells. PLY promoted increased mitochondrial ROS, decreased mitochondrial oxygen consumption, and increased caspase 3 cleavage and cell death, which were collectively improved in cells pretreated with GGA. In mice, IP pretreatment with GGA 24 h prior to IT administration of PLY resulted in significantly less Evans Blue Dye extravasation compared to vehicle, indicating preserved endothelial barrier integrity and suggesting that the acute upregulation of Hsp70 may be an effective therapeutic approach in the treatment of lung injury associated with pneumonia.

20.
Invest Ophthalmol Vis Sci ; 59(6): 2520-2528, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29847659

RESUMO

Purpose: Neurofibromatosis type 1 (NF1) is the result of inherited mutations in the NF1 tumor suppressor gene, which encodes the protein neurofibromin. Eye manifestations are common in NF1 with recent reports describing a vascular dysplasia in the retina and choroid. Common features of NF1 retinopathy include tortuous and dilated feeder vessels that terminate in capillary tufts, increased endothelial permeability, and neovascularization. Given the retinal vascular phenotype observed in persons with NF1, we hypothesize that preserving neurofibromin may be a novel strategy to control pathologic retinal neovascularization. Methods: Nf1 expression in human endothelial cells (EC) was reduced using small hairpin (sh) RNA and EC proliferation, migration, and capacity to form vessel-like networks were assessed in response to VEGF and hypoxia. Wild-type (WT), Nf1 heterozygous (Nf1+/-), and Nf1flox/+;Tie2cre pups were subjected to hyperoxia/hypoxia using the oxygen-induced retinopathy model. Retinas were analyzed quantitatively for extent of retinal vessel dropout, neovascularization, and capillary branching. Results: Neurofibromin expression was suppressed in response to VEGF, which corresponded with activation of Mek-Erk and PI3-K-Akt signaling. Neurofibromin-deficient EC exhibited enhanced proliferation and network formation in response to VEGF and hypoxia via an Akt-dependent mechanism. In response to hyperoxia/hypoxia, Nf1+/- retinas exhibited increased vessel dropout and neovascularization when compared with WT retinas. Neovascularization was similar between Nf1+/- and Nf1flox/+;Tie2cre retinas, but capillary drop out in Nf1flox/+;Tie2cre retinas was significantly reduced when compared with Nf1+/- retinas. Conclusions: These data suggest that neurofibromin expression is essential for controlling endothelial cell proliferation and retinal neovascularization and therapies targeting neurofibromin-deficient EC may be beneficial.


Assuntos
Proliferação de Células , Células Endoteliais/patologia , Neurofibromina 1/deficiência , Neovascularização Retiniana/etiologia , Retinopatia da Prematuridade/etiologia , Animais , Aorta Torácica/patologia , Movimento Celular/fisiologia , Células Endoteliais/metabolismo , Inativação Gênica/fisiologia , Humanos , Hipóxia/complicações , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/toxicidade , Neovascularização Retiniana/fisiopatologia , Vasos Retinianos/patologia , Retinopatia da Prematuridade/fisiopatologia , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA